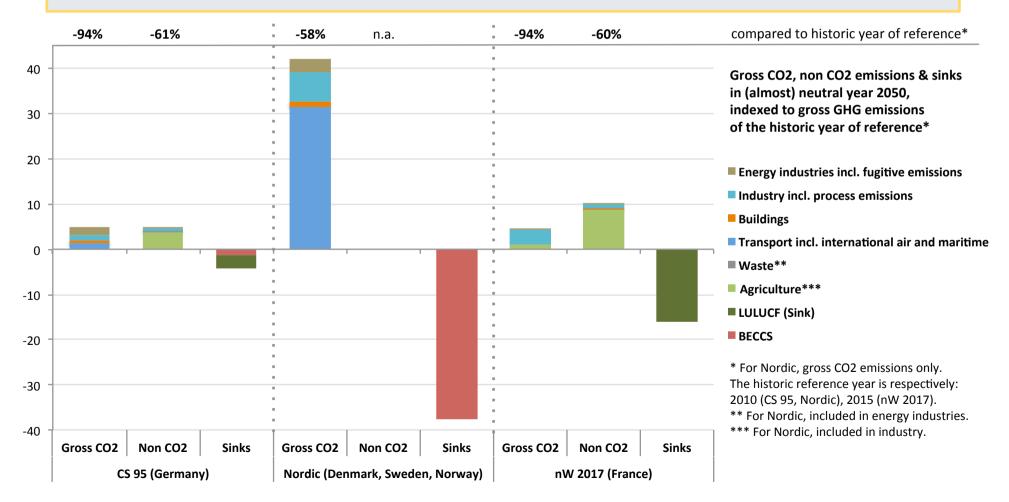
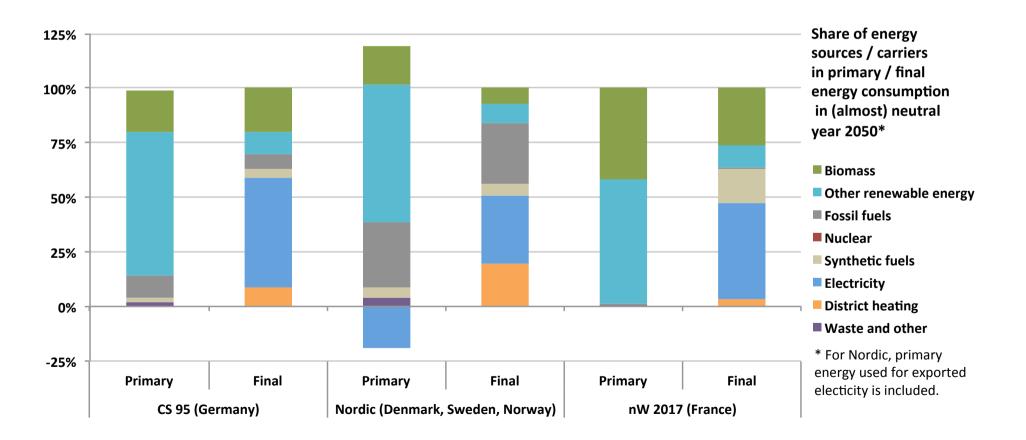
Germany Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark Stefan Petrovic, DTU

Modelling net zero emissions


Common findings to German, Nordic and French examples

Technical Dialogue 3 Copenhagen, 27 February 2019


Germany Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark Stefan Petrovic, DTU

1. Evolution of GHG emissions

Germany Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark Stefan Petrovic, DTU

2. Energy carriers / primary energy sources

Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark **Stefan Petrovic, DTU**

3. Energy demand

	CS 95 (Germany)	Nordic (Denmark, Sweden, Norway)	nW 2017 (France)
Year of reference	2010	2010	2015
Primary energy, compared to historic reference	-55%	-26%	-65%
Final energy, compared to historic reference	-53%	-23%	-57%
in industry	-43%		-51%
in residential	-58%		-63%
in tertiary	-57%		-54%
in transport	-57%		-60%

Germany

Germany Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark Stefan Petrovic, DTU

4. Common challenges for modelling

> Extending the models:

- \rightarrow broaden the scope to all GHG emissions, starting with energy system / market models
- → integrate more cross-sectorial and "life cycle" analysis (especially when taking into account sustainability issues beyond climate change)

> Shitfing in optimisation:

- \rightarrow beyond meeting net zero, need to minimize the cumulative amount of emissions (carbon budget)
- \rightarrow consider the need for prolonged negative emissions afterwards
- → assess the potential for increasing natural sinks and/or deploying artificial ones (CCS, BECCS)

> Taking care of footprint issues:

- \rightarrow integrate international airplane and ship transport (usually not accounted for)
- \rightarrow discuss the need and conditions for mutualizing resources (biomass) and energy security (grid)
- → consider the impact of domestic changes on global emissions (ideally, develop a model of the carbon footprint of good and services)

Germany Lukas Emele, Öko-Institute France Yves Marignac, Ass. négaWatt Denmark Stefan Petrovic, DTU

5. Potentials and options

Various balance of action on demand (reducing the need for GHG emitting processes) and supply (subtituting low or non emitting resources and processes to emitting ones)

> Energy demand:

- → Some energy efficiency is needed to allow for low-carbon energy supply to meet demand
- → Further effort, including sufficiency, can reduce the technological challenge of substituting supply

> Energy supply:

- → Balancing the use of energy carriers according to the availability of sustainable renewable resources and the potential for substituting in different sectors (focus on transports)
- → Developing electric renewables (wind and PV) is generally less constrained than developing bioenergy, which remains however much needed

GHG emissions:

- \rightarrow CO₂ in the energy system can generally be more reduced than other GHG emissions
- \rightarrow Non energy emissions (agriculture, industrial processes) become prioritary
- → Carbon sinks are needed, but various visions about removal by LUCLUF and/or CCS and BECCS